AntCal Documentation

Radiation Pattern Analysis

Analyze radiation pattern based on electric or magnetic sources.

Limitations

TODOs

Vector Potentials

A=μ4πCIe(x,y,z)ejkRRdlF=ϵ4πCIm(x,y,z)ejkRRdl\begin{align} \mathbf{A} &= \frac{\mu}{4\pi} \int_{C} \mathbf{I}_e(x',y',z')\frac{e^{-jkR}}{R} dl' \\ \mathbf{F} &= \frac{\epsilon}{4\pi} \int_{C} \mathbf{I}_m(x',y',z')\frac{e^{-jkR}}{R} dl' \end{align}

Far-Field Region

EAjωAHAa^rη×EA=jωηa^r×AEFjωFHFηa^r×HF=jωηa^r×F\begin{align} \mathbf{E}_A &\simeq -j\omega\mathbf{A} \\ \mathbf{H}_A &\simeq \frac{\hat{\mathbf{a}}_r}{\eta}\times\mathbf{E}_A = -j\frac{\omega}{\eta}\hat{\mathbf{a}}_r\times\mathbf{A} \\ \mathbf{E}_F &\simeq -j\omega\mathbf{F} \\ \mathbf{H}_F &\simeq -\eta\hat{\mathbf{a}}_r\times\mathbf{H}_F = j\omega\eta\hat{\mathbf{a}}_r\times\mathbf{F} \\ \end{align}

Sources

The rotation of each source is defined by

v=Rz(ϕ0)Ry(θ0)v,\begin{equation} \mathbf{v}' = R_z(\phi_0)R_y(\theta_0)\mathbf{v} \text{,} \end{equation}

where 1

Rx(θ)=[1000cosθsinθ0sinθcosθ]Ry(θ)=[cosθ0sinθ010sinθ0cosθ]Rz(ϕ)=[cosϕsinϕ0sinϕcosϕ0001].\begin{align} R_x(\theta) &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \\ R_y(\theta) &= \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \\ R_z(\phi) &= \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{.} \end{align}

The inverse rotation is given by

v=Ry(θ0)Rz(ϕ0)v.\begin{equation} \mathbf{v} = R_y(-\theta_0)R_z(-\phi_0)\mathbf{v}' \text{.} \end{equation}

For v=[θ,ϕ]T=[sinθcosϕ,sinθsinϕ,cosθ]T\mathbf{v}' = [\theta', \phi']^T = [\sin\theta'\cos\phi', \sin\theta'\sin\phi', \cos\theta']^T,

x=cosθ0sinθcos(ϕϕ0)sinθ0cosθy=sinθsin(ϕϕ0)z=sinθ0sinθcos(ϕϕ0)+cosθ0cosθθ=arccos(z)ϕ=atan2(y,x)v=[θϕ]\begin{align} x &= \cos\theta_0\sin\theta'\cos(\phi' - \phi_0) - \sin\theta_0\cos\theta' \\ y &= \sin\theta'\sin(\phi' - \phi_0) \\ z &= \sin\theta_0\sin\theta'\cos(\phi - \phi_0) + \cos\theta_0\cos\theta'\\ \theta &= \arccos(z) \\ \phi &= \operatorname{atan2}(y, x) \\ \mathbf{v} &= \begin{bmatrix} \theta \\ \phi \end{bmatrix} \end{align}

E-Dipole: Finite Length Dipole

The length is represented by L=l/λL = l/\lambda.

U(θ)=ηI028π2[cos(πLcosθ)cos(πL)sinθ]2\begin{equation} U(\theta) = \frac{\eta|I_0|^2}{8\pi^2}\left[ \frac{\cos(\pi L\cos\theta) - \cos(\pi L)}{\sin\theta} \right]^2 \end{equation}

If LL = 0.5, GmaxG_{\text{max}} ≈ 1.64 (2.15 dBi), HPBW ≈ 78°.

M-Dipole: Circular Loop of Constant Current

Assumed to be a small loop.

U(θ)=ηk4m2sin2θ32π2\begin{equation} U(\theta) = \frac{\eta k^4m^2\sin^2\theta}{32\pi^2} \end{equation}

GmaxG_{\text{max}} = 1.5 (1.76 dBi), HPBW = 120°.

Phasor Addition 2 3

We have

asin(x+θa)+bsin(x+θb)=csin(x+φ),\begin{equation} a\sin(x+\theta_a)+b\sin(x+\theta_b)=c\sin(x+\varphi)\text{,} \end{equation}

where cc and φ\varphi satisfy

c2=a2+b2+2abcos(θaθb),tanφ=asinθa+bsinθbacosθa+bcosθb.\begin{gather} c^2=a^2+b^2+2ab\cos(\theta_a-\theta_b)\text{,} \\ \tan\varphi=\frac{a\sin\theta_a+b\sin\theta_b}{a\cos\theta_a+b\cos\theta_b}\text{.} \end{gather}

φ\varphi can be calculated like this

φ=atan2(asinθa+bsinθb, acosθa+bcosθb).\begin{equation} \varphi=\operatorname{atan2}(a\sin\theta_a+b\sin\theta_b,\ a\cos\theta_a+b\cos\theta_b)\text{.} \end{equation}

Field

Visualize vector fields in an interactive SVG.

TODOs:

Notes:

Limitations:

How to export vector fields in ANSYS HFSS

  1. Measure the bounding box (in Cartesian coordinate system) of the area of interest
  2. Open the Field Calculator (e.g., right click Field Overlays)
  3. Select the desired quantity (e.g., Vector_E) and copy it to the stack (or construct your own vector quantity)
  4. Select the correct context (especially the phase)
  5. Click “Export…”
  6. Use “Calculate grid points”, fill in the grid dimensions based on the bounding box
  7. Check “Include points in output file” to include vector starting positions in the file
  8. Save the .fld file

Report (TODO)

Upload data files to generate figures.

Reference

See IEEE Author Center.

10pt is used by the vast majority of papers.

—How to Use the IEEEtran LaTeX Class

Format and save your graphics using a suitable graphics processing program that will allow you to create the images as PostScript (PS), Encapsulated PostScript (.EPS), Tagged Image File Format (.TIFF), Portable Document Format (.PDF), or Portable Network Graphics (.PNG).

Most charts, graphs, and tables are one column wide (3.5 inches / 88 millimeters / 21 picas) or page wide (7.16 inches / 181 millimeters / 43 picas). The maximum depth a graphic can be is 8.5 inches (216 millimeters / 54 picas).

Author photographs, color, and grayscale figures should be at 300 dpi. Lineart, including tables should be a minimum of 600 dpi.

While IEEE does accept vector artwork, it is our policy is to rasterize all figures for publication. This is done in order to preserve the figures’ integrity across multiple computer platforms.

All color figures should be generated in RGB or CMYK color space. Grayscale images should be submitted in Grayscale color space. Line art may be provided in grayscale OR bitmap colorspace.

When preparing your graphics IEEE suggests that you use of one of the following Open Type fonts: Times New Roman, Helvetica, Arial, Cambria, and Symbol.

—Preparation of Papers for IEEE Transactions and Journals (April 2013)

Footnotes

  1. Rotation Matrix

  2. Trigonometric Identities

  3. Phasor Addition